skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khalili, Mohammad_Mahdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with block-wise sparse matrices and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation at every even round of model update. Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic and real-world data show that the Upcycled-FL strategy can be adapted to many existing FL frameworks and consistently improve the privacy-accuracy trade-off 
    more » « less